Search results

1 – 2 of 2
Article
Publication date: 13 September 2022

Zhaoqin Wang, Yu Shi and Xiaorong Wang

This paper aims to investigate the additive manufacturing (AM) approach of a spatial complex curve feature (SCCF, mapped from two-dimensional nonuniform rational B-splines…

Abstract

Purpose

This paper aims to investigate the additive manufacturing (AM) approach of a spatial complex curve feature (SCCF, mapped from two-dimensional nonuniform rational B-splines [2D-NURBS] curve) on a complex surface based on a serial robot using plasma built-up welding, and lays a foundation for plasma AM SCCFs on complex surfaces by combining the NURBS theory with the serial robotic kinematics.

Design/methodology/approach

Combining serial robotic kinematics and NURBS theory, a SCCF mapped from a square-like 2D-NURBS curve is prepared on a predefined complex NURBS surface using serial robotic plasma AM. The interpolation points C (ui) on the square-like 2D-NURBS curve are obtained using the equi-chord length interpolation method, and mapped on a predefined NURBS surface to get mapped points S (ui, vj). The homogeneous transformation matrix T = [n o a S (ui, vj)] of the plasma torch is calculated using the mapped points S (ui, vj) and the designated posture [n o a]. Using the inverse kinematics of the serial robot, the joint vector θ of the serial robot can be computed. After that, the AM programs are generated and transferred into the serial robotic controller and carried out by the serial robot of Motoman-UP6. The 2D-NURBS curve (square-like) is considered as AM trajectory planning curve, while its corresponding SCCF mapped from the 2D-NURBS curve as AM trajectory.

Findings

Simulation and experiments show that the preparation of SCCF (mapped from 2D-NURBS curve) on complex NURBS surface using robotic plasma AM is feasible and effective.

Originality/value

A SCCF mapped from a 2D-NURBS curve is prepared on a complex NURBS surface using the serial robotic plasma AM for the first time. It provides a theoretical and technical basis for plasma AM to produce SCCFs on complex surfaces. With the increasing demand for surface remanufacturing of complex parts, the serial robotic plasma AM of SCCFs on complex NURBS surfaces has a broad application prospect in aero-engine components, high-speed rail power components, nuclear industry components and complex molds.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 July 2014

Zhaoqin Yin and Huijie Liu

– The purpose of this paper is to study nanoparticles diffusion and coagulation processes in a twin-jet.

Abstract

Purpose

The purpose of this paper is to study nanoparticles diffusion and coagulation processes in a twin-jet.

Design/methodology/approach

Large eddy simulation (LES) and Taylor-series expansion moment method (TEMOM) are employed to deal with a nanoparticle-laden twin-jet flow.

Findings

The numerical results show that the interaction of the two jets and turbulence eddy structures rolling-up, paring and shedding in flow sharply affects particles number concentration. Particle diameter grows quickly at the interfaces of jets. Coagulation shows more obvious effect at initial stage than that in the subsequent period. Then diffusion makes the particle diameter distribution much more uniform.

Originality/value

In recent years a great number of attentions have been focussed on the issue of particulate dynamics processes including diffusion, coagulation and deposition, etc. However, up to now few works have been focus on the nanoparticles coagulation and dispersion in turbulent flows. The investigation on the diffusion and coagulation process of nanoparticles using TEMOM in a twin-jet flow has not been found.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 2 of 2